

DECARBONIZING ELECTRICITY GENERATION: THE INTERPLAY BETWEEN CARBON PRICING AND RENEWABLE ENERGIES

Adhurim Haxhimusa

Zentrum für Wirtschaftspolitische Forschung (ZWF), FHGR, Chur

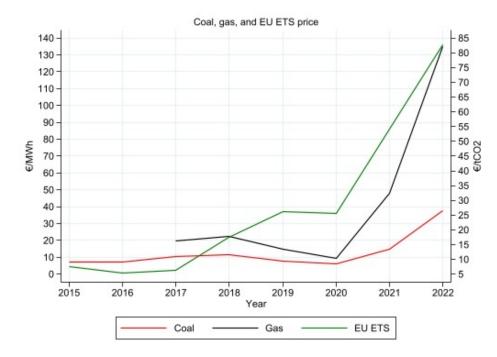
Energieforschungsgespräche Disentis 25. – 27.01.2023, Disentis/Mustér

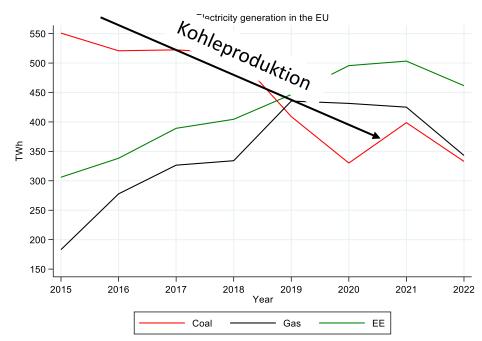
Einführung

- Klimaveränderungen → steigende Temperaturen
 - Das Gesamtvolumen aller Schweizer Gletscher ist zwischen 1960 und 2022 von 100.34 km³ auf 49.21 km³ gesunken.

Eisvolumen der Schweizer Gletscher

gemäss hydrologischem Jahr (vom 1. Oktober bis 30. September)




Einführung

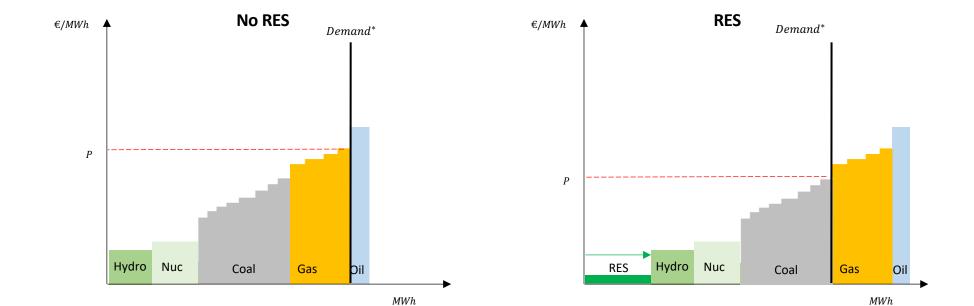
- Energiewende ist nötig
 - Fossilen Energieträger: Kohle, Gas, Öl
 - EE: Wind, PV, Geothermie, Biomasse, etc.

Welche Instrumente stehen zur Verfügung?

- The Large Combustion Plant Directive (LCPD, 2001/80/EC)
- EU-Emissionshandelssystem (EU ETS) mit historisch «wirkungslosen» Preisen
 - Seit Mitte 2017 stiegen die Preise
- EU Länder haben verschiedene Förderprogramme für EE implementiert
 - Der Anteil der EE im Strommix ist angestiegen (von Land zu Land sehr unterschiedlich) → DE als Vorreiter
 - 2/3 mehr Stromeinspeisung aus EE in 2021 als in 2015

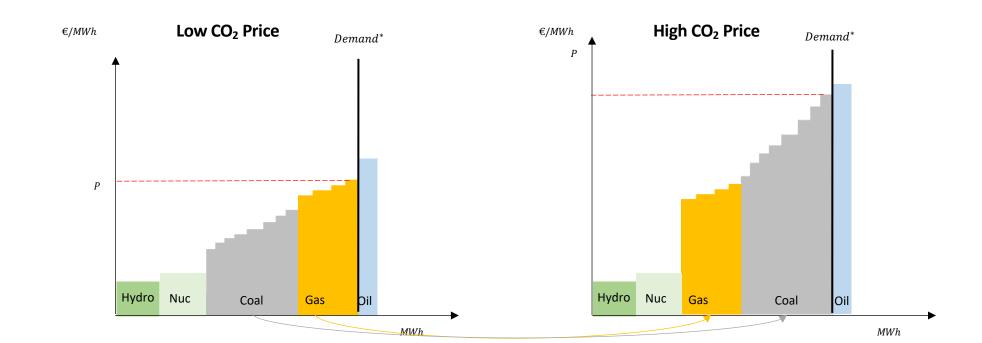
Einführung

 In einem Stromsystem ohne ausreichend hohen CO2-Preis ersetzen EE hauptsächlich Gas, während Kohle auf dem Markt bleibt (Liebensteiner & Wrienz, 2019)



- Gas ist "sauberer" als Kohle
 - Neue Gaskraftwerke emittieren etwa 50-60 % weniger CO2 pro MWh im Vergleich zu einem typisch neuem Kohlekraftwerk (USDE 2013; EIA 2018)
 - Bei einem "ausreichend hohen CO2 Preis" wechseln Kohle und Gas ihre Positionen in der Merit-Order
 - Dieser "Brennstoffwechsel" würde die Emissionen drastisch reduzieren (Wilson & Staffell 2018 NatureEnergy)
 - Gaskraftwerke (von der «Peak-Load» zur «Base-Load» Technologie)
 - → hohe Flexibilität
 - → als Back-up Technologie
 - → Netzstabilität → insbesondere in einem System mit hohem Anteil der volatilen EE
- Steigt die Auslastung der Gaskraftwerke mit steigendem CO2 Preis?
- Steigt auch die Notwendigkeit nach Lösungen für mehr Flexibilität im Stromsystem?

Merit-Order mit einem geringeren CO2 Preis


- Geringe Wirksamkeit der EE bei der Reduzierung der Emissionen
 - → Strom aus EE ersetzt vor allem Gas und nicht Kohle (Base-Load Technologie)
 - → Marginaler Rückgang der Emissionen
- Gaskraftwerke (Spitzenlast Technologie)

Merit-Order mit einem ausreichend hohen CO2 Preis

- Brennstoffwechsel
 - → Strom aus EE ersetzt vor allem Kohle (nicht mehr als Base-Load Technologie)
 - → Kohlekraftwerke haben einen sehr geringen Flexibilitätsgrad
 - → Nachfrage- und Angebotsschwankungen können sie schwer ausgleichen
 - → Starker Rückgang der Emissionen
- Gaskraftwerke (Base-Load Technologie)
 - Back-up Technologie ????
 - Netzstabilität ????

Methode

- Schätzungen pro Technology
- Flexibles ökonometrisches Modell:

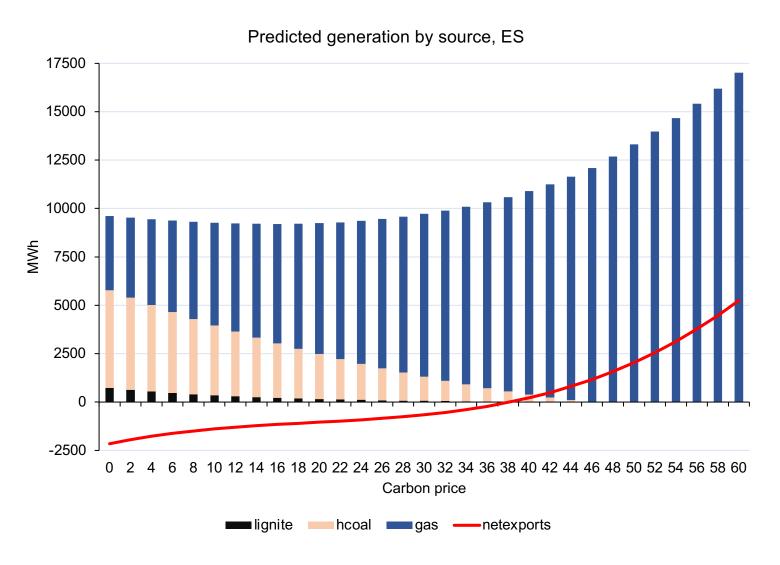
$$\begin{split} Gen_t &= \alpha + \sum_{i=1}^{3} \beta_0 ETS_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \beta_L ETS_t^j \cdot L_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \beta_W ETS_t^j \cdot W_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \beta_{PV} ETS_t^j \cdot PV_t^i + \\ &+ \sum_{j=1}^{3} \sum_{i=1}^{3} \beta_{CR} ETS_t^j \cdot CR_t^i + \sum_{i=1}^{3} \alpha_0 L_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \alpha_W L_t^j \cdot W_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \alpha_{PV} L_t^j \cdot PV_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \alpha_{CR} L_t^j \cdot CR_t^i + \\ &+ \sum_{i=1}^{3} \gamma_0 W_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \gamma_{PV} W_t^j \cdot PV_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \gamma_{PV} W_t^j \cdot CR_t^i + \sum_{i=1}^{3} \delta_0 PV_t^i + \sum_{j=1}^{3} \sum_{i=1}^{3} \delta_0 PV_t^j \cdot CR_t^i + \\ &+ \sum_{i=1}^{3} \theta_0 CR_t^i + \theta_t D_t \end{split}$$

Daten und deskriptive Statistik

Stündliche Daten: 01.01.2015 – 30.11.2021

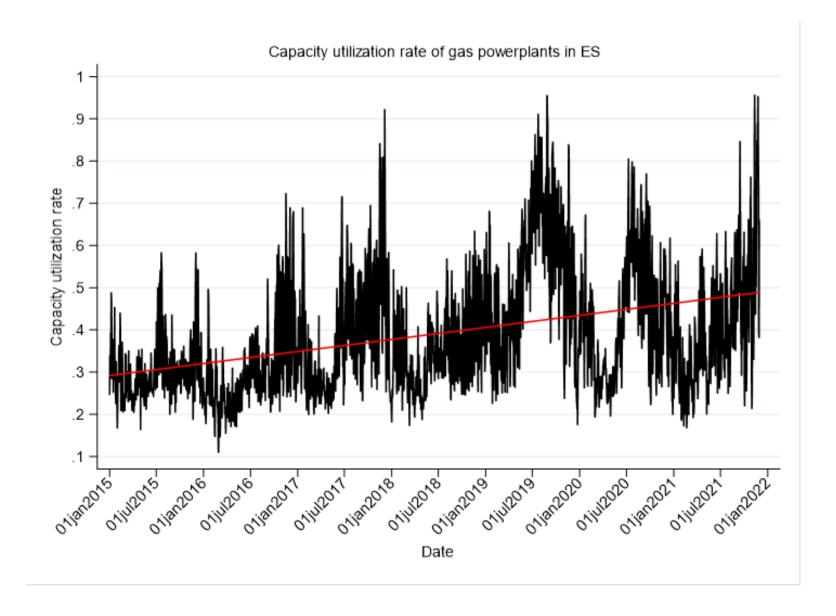
Stromerzeugung aus Braunkohle, Steinkohle, Gas, Wind, und Sonne → ENTSO-E

Nachfrage, Export und Import → ENTSO-E


■ Tägliche Preise: Kohle, Gas, und EU ETS → S&P Platts Powervision

Land: ES

Variable	Obs	Mean	Std. dev.	Min	Max
Lignite	60'577	268	349	0	999
Hard Coal	60'578	2'793	2'329	0	8'359
Gas	60'579	6'448	2′725	1'518	20'438
EU ETS Price	60'580	19	15	4	75
CR	60'581	0.52	0.16	0.15	1.36
Wind	60'583	5'762	3'400	0	19'428
Solar	60'584	1'798	2'321	0	11'457


Ergebnisse

- Strom aus Kohle ↓
- Strom aus Gas ↑
- Importe ↓
- Exporte 个

Ergebnisse

Summary

- (1) Mit steigenden CO2 Preisen wird Kohle- durch Gasstrom ersetzt
 - Die Bepreisung der Externalitäten zeigt Wirkung
 - Die europäischen CO2 Emissionen aus dem Stromsektor gehen zurück
- Umverteilung der Emissionen: In Strommärkten mit hohen grenzüberschreitenden Kapazitäten (z.B. EU Länder)
 - können die Emissionen in Ländern mit hohen Stromerzeugungskapazitäten aus Gas (z.B. ES) sogar steigen → durch erhöhte Exporte
 - weil im Ausland Kohlestromproduktion ersetzt wird
- Die Klimaziele sind auf nationaler Ebene festgelegt
 - Ländern (z.B. Spanien) müssen die Emissionen in anderen Bereichen (z.B. Energieeffizienzmassnahmen) reduzieren, um die Klimaziele erreichen zu können
 - Das verursacht zusätzliche volkswirtschaftliche Kosten für diese Länder

Summary

- (2) Auslastungsgrad der Gaskapazitäten steigt
 - (Flexibleres) Gas wird «Base-Load» Technologie, während Kohle verliert Marktanteile ©
 - Das Stromsystem kann an Flexibilitätsmangel leiden, z.B. Ausgleichung der Lücken bei starken Schwankungen der Stromeinspeisung aus EE wird problematisch
 - Solche (lokalen) Systeme können weniger zuverlässig oder zumindest anfälliger gegenüber starken Marktpreisschwankungen werden
 - In einem System mit einer starken Auslastung der Stromkapazitäten aus Gas und der grenzüberschreitenden Kapazitäten → wie können Schocks aus der Angebotsseite (z.B. weniger Strom aus EE) oder der Nachfrageseite (z.B. hohe Stromnachfrage) ausgeglichen werden, um die Stabilität des Stromsystems und somit der Versorgungssicherheit zu gewährleisten?
 - → Wie wird Netzstabilität gewehrleistet, mit welchen Kosten, und wer übernimmt die Kosten ???
 - → Sind Kapazitätsmärkte eine (effiziente) Lösung?
 - Spanish «Non-paper on Emergency Electricity Market Interventions»

Dr. Adhurim Haxhimusa

Teaching and Research Associate
Center for Economic Policy Research (ZWF)
University of Applied Sciences of the Grisons
Comercialstrasse 22, 7000 Chur
T +41 81 28 63 76 1
adhurim.haxhimusa@fhgr.ch

Danke für Ihre Aufmerksamkeit

