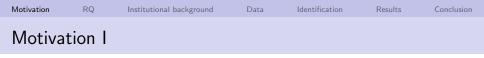
# How Do Plants Respond to a Rising Carbon Tax? Empirical evidence on energy consumption and emissions


Tobias Müller<sup>1</sup>

Thomas Leu<sup>2</sup>

Dario Fauceglia<sup>3</sup>

January 24, 2019

<sup>1</sup>Zurich University of Applied Sciences <sup>2</sup>Zurich University of Applied Sciences <sup>3</sup>Zurich University of Applied Sciences



**Global warming** as one of the key (if not "the" key) challenges for humankind in present times

Rise in global average temperature is predicted to (IPCC, 2016)...

- increase occurrence of natural disasters (e.g. floods, storms, heat waves, cyclones)
- raise the sea level endangering living in lowland areas (e.g. the Netherlands)
- increase mortality, especially among fragile populations (children, elderly)

Overall, global warming leads to **heavily undesirable consequences** and thus substantial **welfare losses** to society!

## Motivation II

#### Multitude of adverse effects of global warming...

| Exposure hazard                               | Health impact                                                     | Confidence*                               | Link to specific effects at the organ leve                                   | 1                                                                                       | Source                                             |
|-----------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|
| Intense heat                                  | death from heat stroke                                            | very high                                 | heart strain, CNS malfunction, dehydra                                       | tion                                                                                    | IPCC (2014) [61]*<br>WHO (2014) [62] <sup>b</sup>  |
|                                               | heat stroke morbidity<br>heat exhaustion<br>loss of work capacity | very high<br>high                         | heart strain, CNS malfunction, dehydra<br>heart strain, mental fatigue       | IPCC (2014) [62]<br>IPCC (2014) [61]<br>IPCC (2014) [61]                                |                                                    |
| Failed local agriculture                      | undernutrition                                                    | high                                      | metabolic energy loss, heart strain, loss capacity                           | IPCC (2014) [61]<br>WHO (2014) [62]                                                     |                                                    |
| Lack of safe water and food                   | water and food-borne diseases                                     | very high                                 | infectious intestinal diseases, diarrhoea                                    | IPCC (2014) [61]<br>WHO (2014) [62]                                                     |                                                    |
| Changed ecology                               | vector-borne diseases                                             | medium                                    | malaria, dengue fever, other insect-borr                                     | IPCC (2014) [61]<br>WHO (2014) [62]                                                     |                                                    |
| Reduced temperatures                          | cold-related mortality/morbidity                                  | low                                       | heart strain, but respiratory disease is n                                   | IPCC (2014) [61]                                                                        |                                                    |
| Storms/floods/droughts/fires                  | injuries, drowning, burns                                         | very high                                 | injuries (any organ can be affected)                                         | IPCC (2014) [61]                                                                        |                                                    |
| Forced migration                              | undernutrition, infectious<br>diseases, mental stress             | high                                      | disease, violence and mental health pro                                      | IPCC (2014) [61]                                                                        |                                                    |
| Health concerns not mentioned<br>Intense heat | brain development<br>interactions with prescriptio                | d to dehydrati<br>dy temperatu<br>n drugs | ion<br>ire in pregnant women, damage to<br>chronic non-communicable diseases | Wesseling et al<br>Edwards et al.,<br>Vanakoski and<br>Kjellstrom et a<br>Parsons, 2014 | 1995 [64]<br>  Seppälä, 1998 [56]<br> ., 2010 [7]; |
| Changed pollen amounts                        | Thanged pollen amounts allergies due to pollen                    |                                           |                                                                              | USEPA, 2008 [65]                                                                        |                                                    |
| Mental stress from local impa                 | ets mental health problems, suid                                  | ides, increase                            | d violence                                                                   | Berry et al., 2010 [66]                                                                 |                                                    |
| Specific hazards for working<br>people        | non-heat-related health risks<br>in the workplace                 | s: vector-born                            | e diseases, undernutrition, poisoning                                        | Bennett and M                                                                           | cMichael, 2010 [67]                                |
| Societal collapse violence, mental stress,    |                                                                   | needs not su                              | nnlied                                                                       | Butler and Ha                                                                           | ler: 2010 [68]                                     |

**Long-term goal:** Paris Agreement (2015): Global temperature rise this century well-below 2° Celsius above pre-industrial levels

How to **counter** the negative effects of global warming?

Climate policy instruments to reduce carbon dioxide emissions

- Market-based instruments
  - Emission trading schemes (e.g. Swiss ETS, EU ETS)
  - Taxes (e.g. carbon taxes, taxes on gasoline)
  - Subsidizing clean energy sources (e.g. solar panels; geothermal heat pumps)

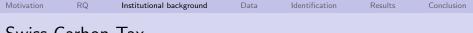
This paper: Impact of a *rising* carbon tax on plant behavior

**Key research question:** What is the impact of the introduction of an increasing carbon tax on plant energy consumption and emissions?

Ex-post analysis of the Swiss carbon tax introduced in 2008 using plant-level (panel) data for the years 2001-2015

#### Substantive sub-questions

- How did plants reduce emissions (if any)?
  - Analysis of substition patterns between different energy sources
- How do plants respond to differences in tax-intensity arising due to variation in their fossil fuel mix?
  - Effect heterogeneity by tax-intensity


Nationwide introduction of the  $CO_2$ -levy in 2008 (12 CHF/t)

 Per unit tax on the CO<sub>2</sub> emissions from consumption of fossil fuels

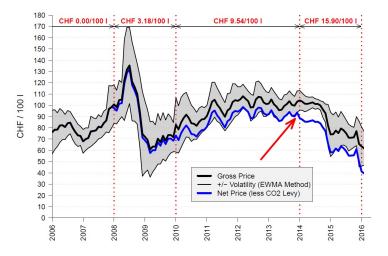

| Years     | Tax          | Light oil | Natural gas |
|-----------|--------------|-----------|-------------|
|           | $CHF/t CO_2$ | CHF/TJ    | CHF/TJ      |
| 2008-09   | 12           | 885       | 673         |
| 2010-2013 | 36           | 2654      | 2020        |
| 2014-2016 | 60           | 4423      | 3366        |

Table: Tax burden by type of fossil fuel

**Unique institutional setting:** Carbon tax increased by 400% between 2008 and 2014 for firms active in the service and industry sector



## Swiss Carbon Tax



| Motivation | RQ | Institutional background | Data | Identification | Results | Conclusion |
|------------|----|--------------------------|------|----------------|---------|------------|
| Data I     |    |                          |      |                |         |            |

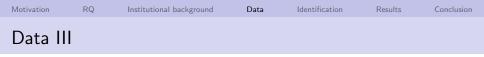
**Administrative plant-level (panel) data** from the Swiss Federal Office of Energy (SFOE) for the years 2001-2015

Sample: 44'909 observations from 10'290 plants active in the service and industry sector

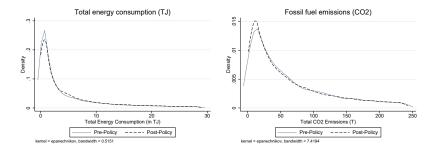
#### Outcome variables

- Total energy consumption (TJ)
- Total CO<sub>2</sub> emissions (tons)
- Consumption and emissions by energy source (heavy and light oil, natural gas, wood)
  - Fossil-fuel shares (weight of, e.g., natural gas in a plants fossil fuel mix)
- Net electricity consumption (TJ)
- Plant characteristics (number of employees, floor area, (sub)sector affiliation)

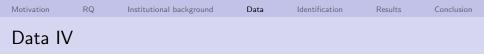
| Motivation |  |  |  |
|------------|--|--|--|
|            |  |  |  |
|            |  |  |  |


RQ

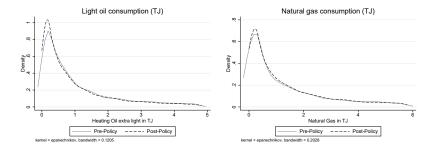
Data


### Data II

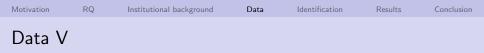
|                                           | Pre-policy |          |       | Р        |          |       |
|-------------------------------------------|------------|----------|-------|----------|----------|-------|
|                                           | Mean       | Std.Dev. | Obs   | Mean     | Std.Dev. | Obs   |
| Plant outcomes                            |            |          |       |          |          |       |
| Total Energy Consumption (in TJ)          | 20.88      | 150.05   | 21303 | 22.52    | 143.75   | 23606 |
| Total CO <sub>2</sub> emissions (in tons) | 611.94     | 4038.56  | 21303 | 589.46   | 3497.70  | 23606 |
| Light oil (in TJ)                         | 2.46       | 7.99     | 21303 | 1.73     | 5.47     | 23606 |
| Share light oil (% fossil fuel mix)       | 0.70       | 0.44     | 21086 | 0.58     | 0.48     | 23521 |
| Natural gas (in TJ)                       | 6.29       | 58.75    | 21303 | 7.67     | 58.03    | 23606 |
| Share natural gas (% fossil fuel mix)     | 0.30       | 0.44     | 21086 | 0.42     | 0.48     | 23521 |
| Electricity consumption (in TJ)           | 8.86       | 69.38    | 21303 | 9.58     | 60.30    | 23606 |
| Share electricity (% total energy cons.)  | 0.41       | 0.24     | 21303 | 0.46     | 0.24     | 23606 |
| Plant characteristics                     |            |          |       |          |          |       |
| Service sector                            | 0.47       | 0.50     | 21303 | 0.48     | 0.50     | 23606 |
| Full-time employees                       | 96.46      | 185.16   | 21303 | 122.83   | 252.15   | 23606 |
| Part-time employees                       | 21.57      | 79.18    | 21303 | 32.98    | 108.69   | 21454 |
| Gross Floor Area $(m^2)$                  | 9089.84    | 24081.56 | 21303 | 10784.02 | 24916.98 | 23606 |


- Slight drop in average emissions post-policy (pprox -20 tons)
- Shift away from light oil to natural gas and electricity consumption

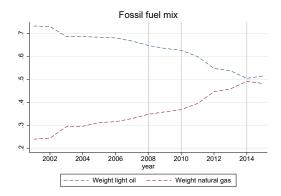



#### Big picture: Energy consumption (in TJ) and emissions (in tons)




- Low amounts of energy consumption less likely post-policy
- Low amounts of emissions significantly more likely post-policy




#### Big picture: Light oil and natural gas consumption (in TJ)



- Drastic reduction in light oil consumption post-policy
- Slight increase in natural gas consumption post-policy



#### Big picture: Evolution of fossil-fuel mix



 Distinct trend away from light oil towards natural gas starting in the early 2000s **Empirical goal:** Estimate the impact of the time-varying carbon tax on plant energy consumption and emissions

#### Key econometric challenge

- Disentangling the effects of the carbon tax from other factors determining plant emissions/consumption
  - For example, plant emissions crucially depend on firm size and technology besides the level of the carbon tax
  - Credible identification of the impact of the carbon tax thus hinges on the ability to convincingly isolate its impact from these other factors (i.e. selection-on-observables assumption)
- Inclusion of dynamics causes the well-known Nickell bias

How to capture the impact of the carbon tax on plant behavior?

**Bias-corrected dynamic fixed effects** specifications to estimate the *average* policy effect

$$y_{it} = \alpha_i + \phi y_{it-1} + \tau_t D_t + \lambda t + x'_{it} \beta + A'_t \gamma + \varepsilon_{it}$$
(1)

- ▶ y<sub>it</sub>: energy consumption/emission for plant i in year t
- $\alpha_i$ : plant fixed effect (capturing, e.g., production technology)
- D<sub>t</sub>: Binary indicators for the different post-policy periods when the carbon tax was increased
- x<sub>it</sub>: Time-varying plant characteristics (e.g. plant size)
- A<sub>t</sub>: Time-varying aggregate factors (e.g. economic activity indicators, energy prices)

# Results I - Average policy effects

| Carbon policy effects                            |          |         |                               |          |  |  |
|--------------------------------------------------|----------|---------|-------------------------------|----------|--|--|
| Outcome Variable                                 | In(Tota  | l cons) | In(CO <sub>2</sub> Emissions) |          |  |  |
| D <sub>2008-09</sub> (12 CHF/t CO <sub>2</sub> ) | 0.01     | 0.02*** | -0.02**                       | -0.01    |  |  |
|                                                  | (0.1)    | (0.00)  | (0.01)                        | (0.01)   |  |  |
| D <sub>2010-13</sub> (36 CHF/t CO <sub>2</sub> ) | -0.01    | 0.01    | -0.06***                      | -0.05*** |  |  |
|                                                  | (0.01)   | (0.01)  | (0.01)                        | (0.01)   |  |  |
| D <sub>2014-15</sub> (60 CHF/t CO <sub>2</sub> ) | -0.04*** | 0.00    | -0.12***                      | -0.06*** |  |  |
|                                                  | (0.01)   | (0.01)  | (0.02)                        | (0.02)   |  |  |
| Lagged outcome                                   | No       | Yes     | No                            | Yes      |  |  |
| Plant fixed effects                              | Yes      | Yes     | Yes                           | Yes      |  |  |
| Time trend                                       | Yes      | Yes     | Yes                           | Yes      |  |  |
| Plant characteristics                            | Yes      | Yes     | Yes                           | Yes      |  |  |
| Economic activity indicators                     | Yes      | Yes     | Yes                           | Yes      |  |  |
| Number of Observations                           | 44909    | 28644   | 44909                         | 23810    |  |  |

- Hardly any change in total energy consumption after the introduction of the carbon tax
- Significant and increasing (!) reduction in CO<sub>2</sub> emissions

Data

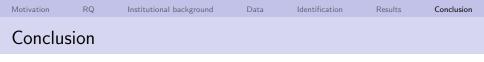
# Results II - Substitution patterns

| Outcome Variable                                 | Light oil | (Y/N)  | In(Lig   | ht oil)  | Natural g | gas (Y/N) | In(Natu | ral gas) | In(Elec | ctricity) |
|--------------------------------------------------|-----------|--------|----------|----------|-----------|-----------|---------|----------|---------|-----------|
| D <sub>2008-09</sub> (12 CHF/t CO <sub>2</sub> ) | 0.01      | 0.00   | -0.03*   | -0.03*   | 0.00      | 0.01*     | -0.04   | -0.02    | 0.03*** | 0.03***   |
|                                                  | (0.00)    | (0.00) | (0.02)   | (0.02)   | (0.00)    | (0.00)    | (0.02)  | (0.02)   | (0.01)  | (0.01)    |
| D <sub>2010-13</sub> (36 CHF/t CO <sub>2</sub> ) | -0.02***  | 0.00   | -0.10*** | -0.09*** | 0.01**    | 0.00      | -0.05   | -0.04    | 0.01    | 0.03***   |
|                                                  | (0.01)    | (0.01) | (0.02)   | (0.02)   | (0.00)    | (0.00)    | (0.03)  | (0.03)   | (0.01)  | (0.01)    |
| D <sub>2014-15</sub> (60 CHF/t CO <sub>2</sub> ) | -0.03***  | 0.00   | -0.21*** | -0.08**  | 0.02***   | 0.01      | -0.10** | -0.06*   | -0.03** | 0.01      |
|                                                  | (0.01)    | (0.01) | (0.03)   | (0.03)   | (0.01)    | (0.01)    | (0.04)  | (0.03)   | (0.01)  | (0.01)    |
| Lagged outcome                                   | No        | Yes    | No       | Yes      | No        | Yes       | No      | Yes      | No      | Yes       |
| Plant fixed effects                              | Yes       | Yes    | Yes      | Yes      | Yes       | Yes       | Yes     | Yes      | Yes     | Yes       |
| Time trend                                       | Yes       | Yes    | Yes      | Yes      | Yes       | Yes       | Yes     | Yes      | Yes     | Yes       |
| Plant characteristics                            | Yes       | Yes    | Yes      | Yes      | Yes       | Yes       | Yes     | Yes      | Yes     | Yes       |
| Economic activity indicators                     | Yes       | Yes    | Yes      | Yes      | Yes       | Yes       | Yes     | Yes      | Yes     | Yes       |
| Number of Observations                           | 44909     | 28399  | 32628    | 20387    | 44909     | 28399     | 18406   | 11334    | 44909   | 28399     |

- Significant negative impact of the carbon tax on light oil consumption both at the intensive and extensive margin
- Significant reduction in natural gas consumption but (!) higher likelihood of choosing natural gas post-policy

How to capture the response of plants exposed to different **tax-intensities** based on their fossil-fuel mix?

$$y_{it} = \alpha_i + \alpha_i t + \tau D_{it} + x'_{it}\beta + \varepsilon_{it}$$
(2)


- ▶ y<sub>it</sub>: energy consumption/emission for plant i in year t
- $\alpha_i$ : plant fixed effect (capturing, e.g, production technology)
- α<sub>i</sub>t: plant-specific time trend
- ► D<sub>it</sub>: =1 for pure light oil consumer (pre-policy); =0 if pure natural gas consumer
- x<sub>it</sub>: Time-varying plant characteristics (e.g. plant size)

RQ

## Results III - Tax intensity estimates

| Outcome Variable            | In(CO <sub>2</sub> Emissions) |          |        |  |  |
|-----------------------------|-------------------------------|----------|--------|--|--|
| High tax <sub>2008–09</sub> | -0.03                         | -0.03    | -0.04* |  |  |
|                             | (0.03)                        | (0.03)   | (0.02) |  |  |
| High $tax_{2010-13}$        | -0.10**                       | -0.11*** | -0.07* |  |  |
|                             | (0.04)                        | (0.04)   | (0.04) |  |  |
| High tax $_{2014-15}$       | -0.12**                       | -0.13**  | -0.07  |  |  |
|                             | (0.05)                        | (0.05)   | (0.05) |  |  |
| Plant characteristics       | Yes                           | Yes      | Yes    |  |  |
| Plant fixed effects         | Yes                           | Yes      | Yes    |  |  |
| Year fixed effects          | Yes                           | No       | Yes    |  |  |
| Sector-year fixed effects   | No                            | Yes      | No     |  |  |
| Plant-specific time trends  | No                            | No       | Yes    |  |  |
| Number of Observations      | 28809                         | 28809    | 28809  |  |  |

- Tax intensity significantly influences plant emissions
- Emission reductions increase with the tax burden



So, how do plants respond to a rising carbon tax?

- Significant and increasing reductions in emissions as a response to the carbon tax (up to -12%\*\*\*)
- Substitution of light oil with natural gas
- Significant reductions in both consumption of light oil and natural gas post-policy
- Plants with a carbon-intensive fossil fuel mix show a stronger response to the carbon tax
- Similar response to the carbon tax in terms of emission reductions both in the service and industry sector
- Results are robust to a series of robustness checks (balanced panel, constant fossil fuel mix sample, etc.)

| Motivation | RQ | Institutional background | Data | Identification | Results | Conclusion |
|------------|----|--------------------------|------|----------------|---------|------------|
|            |    |                          |      |                |         |            |

#### Thank you for your attention!