

Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

Will the experience curve of PV repeat for Batteries and Electrolysis?

Energieforschungsgespräche Disentis 2019 23. – 25. Januar 2019, Kloster Disentis

Prof. Dr. Dominik Möst

- What are experience curves and what can we learn from them?
- How do experience curves look like for PV systems and what can we learn from it for the future?
- And how will prices for battery electric vehicles (BEV), fuel cell electric vehicles (FCEV) and electrolysis develop?

- 1 Background information of the REFLEX project
- 2 Basics of experience curves
- 3 The cases of photovoltaic and wind: what can be learned?
- 4 What can we learn about batteries, fuel cells and electrolysis?
- 5 Some final remarks

REFLEX: Project Scope and Applied Approaches

Partners of the REFLEX-Project

Scenarios in REFLEX for shaping the European energy system

CENTRALIZED	Fossil and nuclear based energy system	Existing System	Mod-RESFlex Scenario (central)GHG emission reduction:• project result (explorative approach)RES-share in power generation:• ~55% in 2050"	High-RESFlex Scenario (central) GHG emission reduction: • ~ -80% in 2050 ²⁾ RES-share in power generation: • 80-90% in 2050 • trend to centralized wind power	European energy system is based on 100% renewable energy sources
	onventional		Focus in REFLEX	High-RESFlex Scenario (decentral) GHG emission reduction: • ~ -80% in 2050 RES-share in power generation: • 80-90% in 2050 • trend to decentr- alized solar power	Renewable

1) EU Reference Scenario 2016 (Capros et al. 2016) 2) EC Roadmap for moving to a competitive low carbon economy in 2050 (COM 2011/0112)

TU Dresden, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

FF2

System perspective Adaptation of "optimal" capacity?

Necessary generation portfolio – what will change?

- Reduction of base-load and mid-load
- Increase of peak-load
- Increase of storage power plants

FF

- 1 Background information of the REFLEX project
- 2 Basics of experience curves
- 3 The cases of photovoltaic and wind: what can be learned?
- 4 What can we learn about batteries, fuel cells and electrolysis?
- 5 Some final remarks

Theory of learning curves

EE²

- Classical learning effect: *"learning by doing"* (Wright, 1936; Arrow, 1962)
- Basic idea: increased realisation of a technology leads to a higher production efficiency and reduced production costs
- Learning effects can be described by learning curves (or experience curves) and are used as a rough estimation of long-term costs developments
- Amount of cumulative production is often used as *"proxy"* for learning, but other factors also influence product prices and learning effects
 - size of factories (see debates about Giga-factories)
 - spend R&D subsidies
 - resource prices

- ...

Multiple purposes

- insight into and amount of new knowledge for the use of the new technology
- continuous improvement in the manufacturing process
- standardization and automation
- economies of scale
- Know-how pool
- Benefits in purchase (e.g. driven by market power)
- => However: cumulative capacity is often used as a proxy for learning effects

Cost driver

Market-push Competition, R & D investment Computer Demand-pull Government policies, Flue gas demonstration project, desulfurisation (FGD) consumer adaptation Process advancement Economies-of-scale. Photovoltaic (PV) infrastructure, industry panels integration, components Technological Functionality improvement, Wind turbines change material, design, application Source: Heuberger et al. (2017)

Characteristics

EE²

Example

Experience curves allow to estimate future cost reductions

Concept

- Experience curve describe a functional interrelation between the cumulative production and the (real) costs per unit
- Core message: Increase of production, decreases marginal costs.
 E.g. a doubling of the cumulative production reduces unit costs by 20 to 30%

- ...

Competitiveness of new technologies and their needed investment volumes?

Uncertainty of learning factor (and expected capacity) has significant impact on reached competitiveness and may result in "delay" by decades (here: factor of capacity between 100 and 1000 GW)

- 1 Background information of the REFLEX project
- 2 Basics of experience curves
- 3 The cases of photovoltaic and wind: what can be learned?
- 4 What can we learn about batteries, fuel cells and electrolysis?
- 5 Some final remarks

Global installed solar PV capacity

Strong growth of installed PV capacity

- Main technology: silicon PV with approx. 95% share (multicristalline 70% and 25% monocrystalline)
- Prices for modules lowest in China and India (0,43 USD/W) and highest in California (0,61 USD/W)
- Expectations:
 - ~ 950 GW in 2025
 - >2.000 GW in 2040
 - Two degree scenario: >7.100 GW in 2050 (currently on track)

Source IEA WEO 2017

TU Dresden, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

Experience curves for PV modules, systems and BOS components

Source: REFLEX: Experience curve report (not published yet)

Learning rate of

- 21% for modules
- 19% for systems
- and considerably lower for BOS components (wiring, switches, mounting system, solar inverters, ...) with just 13%
- Contribution of BOS has increased to around 50% of system costs now (from ~20% 10 years ago)

Quite rapid decline between 2012 and 2015

- Fast decline is likely to be related to market dynamics rather than only being a result of technological progress
- => Cost extrapolation
- 2025: 0,28 0,33 EUR/W
- 2040: 0,21 0,27 EUR/W

Experience curve for wind energy

Strong growth of installed wind capacity

- 74 GW in 2006 to ~500 GW in 2016, dominated by China with approx. 175 GW
- Expectations:
 - ~ 1200 GW (~ 1700 GW) in 2030 and
 - ~ 1700 GW (~ 2600 GW) in 2040 (in brackets: climate change lower than 2 degrees) Source IEA WEO 2017

Experience curve for wind energy

Strong growth of installed wind capacity

- 74 GW in 2006 to ~500 GW in 2016, dominated by China with approx. 175 GW
- Expectations:
 - ~ 1200 GW (~ 1700 GW) in 2030 and
 - ~ 1700 GW (~ 2600 GW) in 2040 (in brackets: climate change lower than 2 degrees) Source IEA WEO 2017

Onshore system not behaving according to theory

- Price increase between 2004 and 2008 ?
- "Long-term" LR of ~ 6%
- "Short-term" LR of ~25%

Offshore:

- Less mature
- Learning rate of ~10%
- => Cost extrapolation:
 - 2030: ~ 0,95 -1,1 k€/kW
 - 2040: ~ 0,8 1 k€/kW

=> However, increase of generation (higher full load hours) => lower generation costs!

Auction results for RES-E in Germany

- 1 Background information of the REFLEX project
- 2 Basics of experience curves
- 3 The cases of photovoltaic and wind: what can be learned?
- 4 What can we learn about batteries, fuel cells and electrolysis?
- 5 Some final remarks

Dominant markets for EV: China and US with high growth rates

China has clear focus on EV-strategy

- China dominates passenger car demand and EV-production
- Reasons of China's policies
 - Key market E-mobility
 - Clean air in mega-cities
 - Independence from oil
 - Climate protection
- Regulation:
 - Quota for EV-cars from 2019

Source: Fraunhofer ISI and IEA (2017): Global EV Outlook 2017.

Experience curve for vehicle battery packs and fuel cell stacks

- Prices for batteries have declined rapidly
- ~ 200 USD/kWh for BEVs (+components), competitive with combustion around 150 USD/kWh (incl. components)
- Learning rate for BEVs around 15% and HEVs around 11%
- Learning rate for FCEV around 18%
- Expectations for BEV/HEV market development
 - 106 millions in 2030
 - 277 millions in 2040 (corresponding to 14% market share (MS))
- 243 in 2030 and 873 millions in 2040 (~40% MS) under two degree scenario Source IEA WEO 2017
 Extrapolation depends on assumptions about
 - Battery pack size per EV *Larger packs resulting in larger declines*
- => Cost extrapolation:
 - 2030: ~ 50- 90 USD/kWh
 - 2040: ~ 30 70 USD/kWh
 - => Fuel cell depletion difficult to extrapolate

Learning will not only decrease costs, but also increase storage capacity and density

New batteries will increase possible driving distances, costs and weight!

Experience curves of electricity storage

FF²

Experience curve for Power-to-hydrogen (alkaline electrolysis)

EE²

Hydrogen up to now mainly produced from fossil resources

- 95% of global production
- Proton exchange membrane (PEM) cells and solide oxid cells more on demonstrating scale and yet no large deployments, but more suitable for intermittent operation
- Alkaline electrolyser is considered as more mature and economically attractive technology 40
- Learning rate of ~18%, but with a relatively high parameter error
- ... and first data point strongly determines slope of the curve
- Future penetration levels at current state difficult to predict

Source: REFLEX: Experience curve report (not published yet)

- 1 Background information of the REFLEX project
- 2 Basics of experience curves
- 3 The cases of photovoltaic and wind: what can be learned?
- 4 What can we learn about batteries, fuel cells and electrolysis?
- 5 Some final remarks

Experience curves as mean for long-term analysis in scenarios?

- Experience curve: a macroscopic model
 - Based on ex-post realisations => empirical data
 - no reliable basis for short-term decisions
- Experience curves can be an important tool in deriving long-term strategies and can be used in scenario development (see IEA (2000))
- Biggest challenge in using experience curves for the ex-ante analysis is that:
 - that an exact theoretical prediction of the course of the cost reduction curve for a new product is not possible / underlies high uncertainties
 - to make assumptions for starting point and amount of cost degression
- At least experience curves give some indications of the expected cost degression rates

Will the learning curve of PV repeat for **Batteries and Electrolysis?**

Learning will take place for the different technologies,

- but learning rates are different
 - PV systems ~ 18% (~21% for modules and ~13% for BOS)
 - ~15% – BEV
 - FCEV ~ 18%

 - P2H₂ ~ 18%, but high uncertainty from learning factor and expected capacity development

Will costs also drop similar to PV?

- BEV: in the short-term: probable (2020), in the long-term (>2030): very likely (other restrictions may play a larger role)
- Electrolysis: in the short-term (2020): hard to expect, in the long-term: difficult to predict, but can not be excluded

\Rightarrow Will the learning of PV repeat for Batteries and electrolysis?

- BEV: very likely (or even certain)
- P2H₂: depends, today seriously not predictable, but very likely under emission reduction scenarios

Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

»Wissen schafft Brücken.«