

Erneuerbare Energien und die Rolle des Schnees

Michael LEHNING, Annelen KAHL Jérôme DUJARDIN, Bert KRUYT, Christoph MARTY, Mathias BAVAY, Stuart Bartlett

Michi Lehning - CRYOS - EPFL laboratory of the WSL/SLF

Motivation

- * We are in the mountains
- * We are in the snow
- * The mountains have traditionally contributed the majority of Swiss electricity

Let's see what the mountains can contribute in a Future Renewable Switzerland

* Influence of Elevation and Snow on PV Production

* PV and Wind in a Fully Renewable Switzerland

* Future Snow

CRYOS, EPFL laboratory of the WSL/SLF

Situation for PV

Distribution of incoming global irradiance (Heliomont product by MeteoSwiss) in Switzeland (2011 – 2016).

Winter shows an even stronger increase with elevation

Annelen Kahl et al. PNAS 2019;116:4:1162-1167

CRYOS, EPFL laboratory of the WSL/SLF

Situation for PV

Snow cover duration also increases strongly with elevation.

At 2000 m a.s.l. ground coverage by snow is 190 days.

Annelen Kahl et al. PNAS 2019;116:4:1162-1167

CRYOS, EPFL laboratory of the WSL/SLF

Annelen Kahl, Jérôme Dujardin, Michael Lehning, PNAS 2019;116:4:1162-1167

Arbitrary mountain location at 2500 m a.s.l.

Define two scenarios to look at real world impact

CRYOS, EPFL laboratory of the vvsL/SLF

Seasonal profile of PV production for Scenarios

Mountain Installations require less Surface

We need to install much less PV surface to produce 12 TWh per year!

Significant seasonal mismatch reduction

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-2000

-3000

This mismatch reduction also reduces the required import of energy

	Panel tilt	PV area
urban	40°	53km²
mountain	90°	42km ²

Bartlett, S. et al., 2018. Charting the Course : A Possible Route to a Fully Renewable Swiss Power System. , A Possible Route to a Fully Renewable Swiss Power System. , Energy, 163, pp. 942–955.

Current Situation with Nuclear

Scenario with a large fraction of solar production

Foreign exchange increases (not net import), grid is less or equally stressed

Climate Change Scenarios for Switzerland (CH2011)

Large spread of predictions on Warming and Precipitation Change

Decrease of mean snow depth at WFJ

Schmucki et al., Int. J. Climatology, 2014

Decrease of mean snow depth at Montana

Schmucki et al., Int. J. Climatology, 2014

Decrease of mean snow depth at Payerne

Schmucki et al., Int. J. Climatology, 2014

Comparative Analysis of Uncertainties in Socio-Economic Snow Indices

Schmucki et al., Theoret. App. Climatology, 2015

A real world example from my house (Davos Laret)

Conclusions

- Existing Infrastructure in the Alps should be used for PV installations
 - Reduces the Winter Energy Gap
 - Reduces Dependency from Import
 - * Reduces total required capacity to replace nuclear
- Renewable installations are largely compatible with grid
 2025
- * Snow will be less in the future but at high elevations snow reduction will be acceptable in the next 30 years

Let's produce even more energy in our mountains