COSMO-1

WRF

SUMMARY & OUTLOOK

<ロト < 同ト < 三ト

Uncertainty and Potential of Wind Power in Switzerland

Bert Kruyt Laboratory for Cryospheric Sciences CRYOS WSL Institute for Snow and Avalanche Research SLF

500

Annex

- ► Intro: ES 2050 & Swiss demand
- What does the Swiss wind resource look like?
- Potential assessment with COSMO-1
- high-resolution modeling of wind in complex terrain

Source: Swiss Energy Authority

ъ

500

Nuclear Othermal+other (including wind, solar, geothermal)

INTRO &	CONTEXT
000000	000

COSMO-1

WRF 0000000 SUMMARY & OUTLOOK

Annex

ALPINE WIND POTENTIAL

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

POTENTIAL IN COMPLEX TERRAIN

Gaudergrat, Davos

(Mott & Lehning 2010)

'Gap winds and orographic channels

- could outperform offshore wind'
- (Draxl & Mayr 2011)

Clifton et al. 2014

INTRO & CONTEXT	COSMO-1	WRF	SUMMARY & OUTLOOK	Annex
00000000	000000000	0000000	000	

SEASONAL PATTERNS

Dujardin et al 2017

INTRO & CONTEXT 000000000	COSMO-1 000000000	WRF 0000000	Summary & Outlook		Annex
DIURNAL AND SEASONAL			ÉCOLE POINTECHNIQUE FÉDÉRALE DE LAUSANNE	R WSL	
PATTERNS DIFFER GREATLY					

▲ロト▲園ト▲園ト▲園ト 園 めんの

time series transformation

anic [m]

1. Create a metric for the lenght of no-power intervals

2. Extreme value theory to calculate 10 year return levels:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

...more power, despite lower air density

...higher winter mean speeds (=more power in winter)

 wind power at elevation can bring stabilising benefits COSMO-1

WRF

SUMMARY & OUTLOOK

WIND CHARACTERISTICS IN CH

...differ greatly from those in flat areas

- Low correlation
- Distinct influence of topography on diurnal and seasonal wind pattern
 - \rightarrow can help to mitigate winter gap
- With increased elevation:
 - Lower risk of sustained periods without power production
 - increased power production
 - increased winter production
- Wind power could prove important for the Swiss energy transition

Intro & Context	COSMO-1	WRF	SUMMARY & OUTLOOK	Annex
00000000	● 0 0000000	0000000	000	

INTRO & CONTEXT

COSMO-1

Motivation & Methods Model Validation Capacity Factors Required turbines

WRF

SUMMARY & OUTLOOK

MOTIVATION

WRF

SUMMARY & OUTLOOK

Annex

Fully physical

able to simulate terrain induced flows

Can we use a mesoscale NWP model to assess wind power potential in Switzerland?

・ ロ ト ・ 同 ト ・ 回 ト ・ в 500

Intro & Context 000000000	COSMO-1 ○○●○○○○○○	WRF 0000000	Summary & Outlook	Annex
COSMO1			ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE	

horizontal resolution of 0.01° (1.11 km N-S & 0.74 to 0.78 km E-S)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Running from 10/2015 = ca 2 yrs data @ 1h resolution

- Verification: 10 m COSMO-1 speeds against IMIS stations
- vertical interpolation between model levels to attain 100 m wind speeds
- simple power model: E82 power curve
 capacity factors and power time series
- ► Model of the *renewable* Swiss power system¹:
 - ► 53% Hydropower
 - ► 47% Wind, PV, geothermal (2.2 TWh/a)
 - 2 years of simulation, but presented as annual
- ► Different wind siting scenarios: calculate import etc

MAE of annual mean speeds: 0.83 m/s (vs 1.5 m/s for the Wind Atlas)

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Rather than calculating wind power potential, what would it take to realize a certain wind power production target?

Method:

- production target (4, 6, or 12 TWh/a)
- populate locations with highest capacity factors until target is reached.
- 6 MW /pixel (3 2MW turbines)
- repeat & vary the maximum allowed altitude for locating turbines

- Improvement over wind atlas: average MAE of bi-annual mean speeds: 0.83 m/s vs 1.5 m/s for the Wind Atlas (45%)
- The required capacity strongly depends on the elevation at which turbines are allowed to be built
- ► Konzept Windenergie Schweiz: 2508 MW for 6 TWh/a
- Theoretical best (unconstrained scenario): 1824 MW for 6 TWh/a

INTRO & CONTEXT	COSMO-1	WRF	SUMMARY & OUTLOOK	Annex
00000000	00000000	000000	000	

INTRO & CONTEXT

COSMO-1

WRF

Motivation Methods Validation Results

SUMMARY & OUTLOOK

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

INTRO & CONTEXT 000000000	COSMO-1 000000000	WRF ○●○○○○○	Summary & Outlook	Annex

Can we improve on the wind speed assessments of the COSMO model with higher resolution simulations?

Does increased resolution lead to higher wind resource assessment due to better terrain representation?

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

- 1. Gütsch (Andermatt)
 - ► 77 by 78 km
 - 900 kW Enercon E44 @ 55m hub-height
 - ▶ 2340 m.a.s.l.
 - very complex terrain

- 2. Haldenstein (Chur)
 - ► 55 km (e-w) by 89 km (n-s)
 - 3 MW Vestas V112 @ 119 m hub-height
 - ▶ 540 m.a.s.l.
 - ► complex terraine > < => = つへで

PARAMETERIZATION

Wealth of parameterization options: Balance performance with computational time

- PBL: YSU with topowind
- 450 m horizontal resolution
- ▶ vertical resolution: 10 m to 1200 m, 80 levels (50mb top)
- terrain smoothed to max 35°
- no micro-physics or cumulus parameterization
- small time step (0.2 0.3 sec)
- Boundary conditions: COSMO-2 (2.2 km)

			(4)/(NYK
00000000	00000000	0000000	000	
INTRO & CONTEXT	COSMO-1	WRF	SUMMARY & OUTLOOK	Annex

GÜTSCH: VALIDATION

COSMO

type 🖶 Wind 🖨 Snow

WRY

-4.0

COSMO

WRY

COSMOZ

WRY

ъ

E

500

,05M01

COSMOZ

Difference in mean speeds WRF - COSMO-2

HIGH-RES MODELING

- increased model resolution shows higher wind speeds
 - \blacktriangleright highly terrain dependent \rightarrow Allow for identification of 'hot spots'
 - not similar under all weather patterns
- Potential in very complex terrain will be underrepresented if terrain is not accurately simulated.
- Need for a well-informed discussion: Incorporate high-resolution modeling into resource assessment for the ES2050

- Complex terrain of the Alps provides promising wind conditions: With increasing elevation:
 - higher power production (/ fewer turbines)
 - shorter no-power periods
 - many locations with favourable seasonal profiles
- COSMO-1 is able to produce better wind resource estimates for complex terrain than wind atlas
- capacity factors up to 0.42
- Using wind power at high altitudes requires fewer turbines
- ► higher model resolutions → terrain better resolved → higher wind resource

High altitude wind power could provide a very important contribution to ES 2050

Wind Resource Assessment (@CRYOS)

- ► Towards resolutions that capture terrain features (~100 m):
- Combine multi-year (COSMO) with shorter high-res (WRF) simulations
 - clustering weather types based on COSMO-2 / stations
 - simulate weather types at high resolutions w. WRF
- more mast data for hub-height validation (and vertical wind profile)

< □ > < □ > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRO & CONTEXT	COSMO-1	WRF	SUMMARY & OUTLOOK	Annex
00000000	00000000	000000	000	

ANNEXES

INTRO & CONTEXT 000000000	COSMO-1 000000000	WRF 0000000	Summary & Outlook	Annex
Measurement Data			ECOLE POLYTECHNIQUE	XLK AUK

110 stations, 2 networks, hourly resolution

< ∃ >

1

E

990

INTRO & CONTEXT 000000000 COSMO-1

WRF

SUMMARY & OUTLOOK

Annex

PUBLIC OPPOSITION

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

- ► one turbine /power curve
- logistical constraints (cost, installation)
- technical constraints
 - shear
 - turbulence
 - icing
- regulatory problems (State, Canton, Municipality)

land-use conflicts (tourism, agriculture)

 INTRO & CONTEXT
 COSMO-1
 WRF
 SUMMARY & OUTLOOK
 Annex

 000000000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

GENERALISED EXTREME VALUE DISTRIBUTION

▲ E● A C

FÉDÉRALE DE LAUSANNE

WRF 000000 SUMMARY & OUTLOOK

Annex

CAPACITY

~ ``

GÜTSCH: VALIDATION

type 🖶 Wind 🛱 Snow

type 🖶 Wind 🖨 Snow

< □ > < 戸

E

 $\exists \rightarrow$

500

Sac

Andermatt Mar16 2016-03-01 10:00:00 to 2016-03-09 20:00:00

type 🖶 Wind 🖨 Snow

January

4.0

RMSE [m/s]

2.0

type 🖶 Wind 🖨 Snow

type 🖶 Wind 🖨 Snow

type 🖶 Wind 🖨 Snow

type 🖶 Wind 🖨 Snow

type 🖶 Wind 🛱 Snow ъ

< □ > < 同 >

≣⇒ E 500

Chur_M Mar16 2016-03-01 10:00:00 to 2016-03-09 21:00:00

Sac

INTRO & CONTEXT 000000000	COSMO-1 000000000	WRF 0000000	SUMMARY & OUTLOOK	Annex
			(4))(1)	

THERMAL FLOWS

Chur_M Jul16 2016-07-17 10:00:00 to 2016-07-22 19:00:00

₹ 990

INT	RO	&	Context
00	000	ЭC	000

COSMO-1

WRF

SUMMARY & OUTLOOK

Annex

WRF 4.0 SETTINGS

<pre>&physics mp_physics ra_tw_physics slope_rad topo_shading radt. f_sfclay_physics sf_surface_physics bl_pbl_physics bldt. cu_physics cudt. isfflx ifsnow icloud surface_input_source num_soil_layers</pre>	$\begin{array}{c} = \ 0, \ 0, \ 0, \ 0, \\ = \ 1, \ 1, \ 0, \ 0, \\ = \ 1, \ 1, \ 0, \ 0, \\ = \ 1, \ 1, \ 0, \ 0, \\ = \ 1, \ 1, \ 0, \ 0, \\ = \ 1, \ 1, \ 0, \ 0, \\ = \ 1, \ 1, \ 0, \ 0, \\ = \ 1, \ 1, \ 0, \ 0, \\ = \ 1, \ 0, \ 0, \ 0, \\ = \ 0, \ 0, \ 0, \ 0, \\ = \ 0, \ 0, \ 0, \ 0, \\ = \ 0, \ 0, \ 0, \ 0, \\ = \ 1, \\ = \ 1, \\ = \ 1, \\ = \ 1, \\ = \ 4, \end{array}$	&dynamics <u>rk_ord</u> diff_opt km_opt diff_6th_pt diff_6th_factor damp_opt zdamp kdamping khdif kydif kydif non_hydrostatic moist_ady_opt	= 3, = 2, = 2, 0, 0, 0, 0, = 0.12 = 3, = 5000., 5000., = 0.2, 0.2, 0.2 = 1, = 0, 0, 0, 0, = 0, 0, 0, 0, = .true., .true = 1, 1, 1, 1,
<pre>surface_input_source num_soil_layers</pre>	= 1, = 4.	non_hydrostatic moist adv opt	= .true., .true = 1, 1, 1, 1,
num_land_cat	= 24,	scalar_adv_opt	= 1, 1, 1, 1,
sf_urban_physics topo wind	= 0, 0, 0, 0, = 1.	epsam mix_isotropic	= 1, 1, 5., 5., = 1,
/	-,	/	

◆ロト ◆課 ト ◆注 ト ◆注 ト E 900

Direct Interactions of Parameterizations

Source: Dudhia - NCAR

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ● 日 ● の へ ()・