

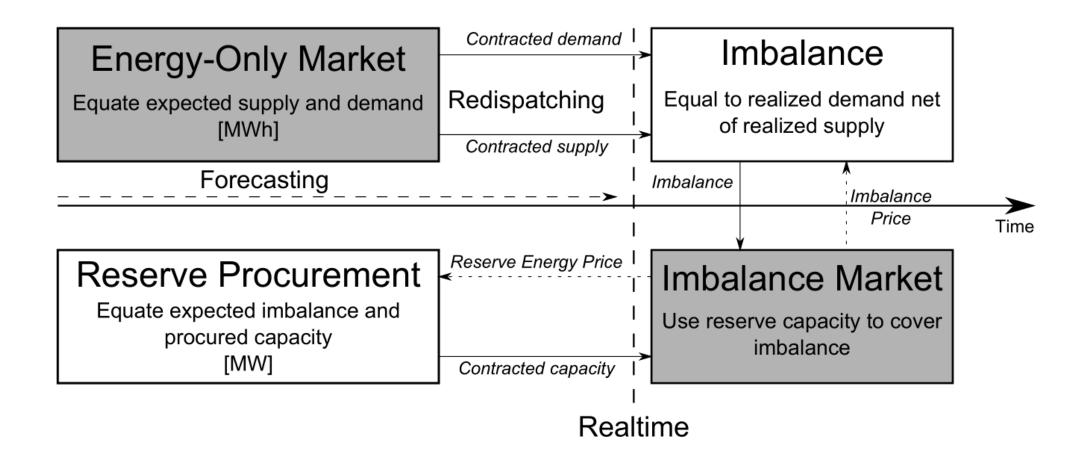
Flexibility in the Swiss Electricity Markets

Jan Abrell

Energieforschungsgespräche Disentis 2019, 24.01.2019

Motivation

- Share of renewable energy sources in electricity supply is increasing
- Wind and solar power are stochastic and intermittent
- More flexibility needed to balance increasing forecast errors
- Flexibility:
 - Technical: More flexible market participants
 - Market: Allow participant to act more flexible



2

Overview Electricity Markets

- What does the current energy market design in Switzerland looks like?
- Is there potential for improvement within the existing market design?
- Simulations on the impact of renewable targets in Switzerland

The Swiss Electricity Market

- Simulation: Impact of Renewable Targets in Switzerland
- Conclusions

Energy-only Markets

- Equate
 expected demand and supply
- Day-ahead markets
 Market clearing one day ahead
- Intra-day markets
 Given:
 New information
 - Day-ahead contracts Clear market within a day

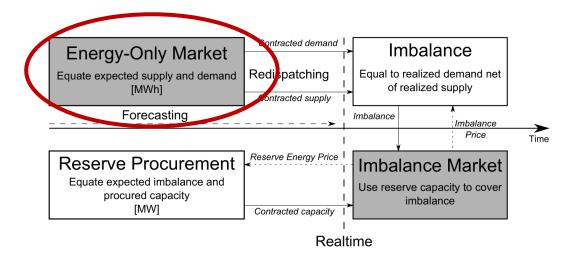
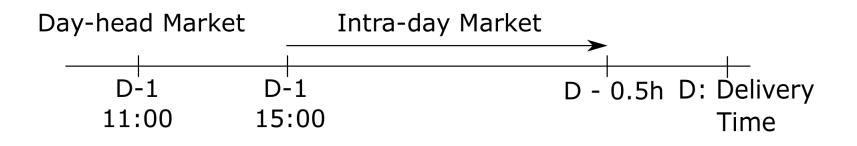



 Table 1: Market Design Aspects of Energy-Only Markets

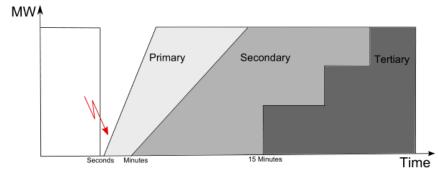
Design Criterion	Description		
Sub-markets	Organization of successive markets distinguished by their gate closure.		
Temporal product specification	Duration of the delivery time period		
Locational product specification	Indexing of products by the node		
	or zone in which they are pro- duced/demanded		
Trading mechanism	Market clearing at a certain point in time or continuously. Auction mechanism (e.g., simple vs. com- plex bids)		

Energy-Only Markets in Switzerland

Day-ahead:

- Hourly and block contracts
- Uniform price across Switzerland
- Bid range: -500 to 3000 €/MWh
- Gate-closure: 11 am

Intraday:


- 15 minute and hourly contracts
- Uniform price across Switzerland
- Bid range: -9'999.99 to 9'999.99 €/MWh
- Gate closure: D 30 minutes

Question:

Is it possible to increase flexibility decreasing intra-day gate-closure to 5 minutes before delivery?

Reserve Procurement

- Reserve capacity is needed to balance unexpected deviations between supply and demand (e.g., variability of load and renewable supply, unexpected outages)
- Three different types of reserves (differentiated by direction):

Notes: Adapted from http://www.e-control.at/industrie/strom/strommarkt/ausgleichsenergie.

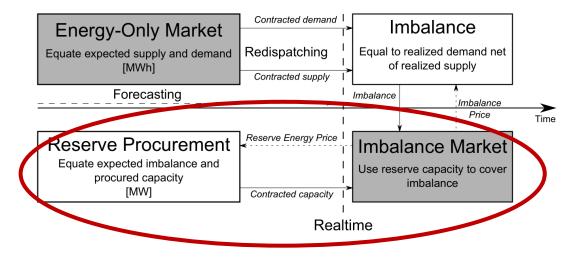
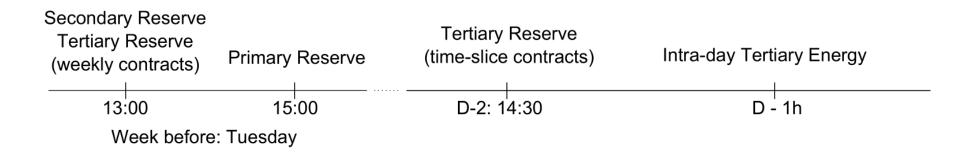



Table 2: Design criteria for reserve procurement

Design Criterion	Description
Temporal product specification	Duration of the delivery time period
Locational product specification	Indexing of products by the node or zone in which they are provided
Trading mechanism	Auction design or mandatory provi- sion
Cost reimbursement	Cost coverage in the case of energy delivery
Demand	Method to determine demand for re- serve capacity

8

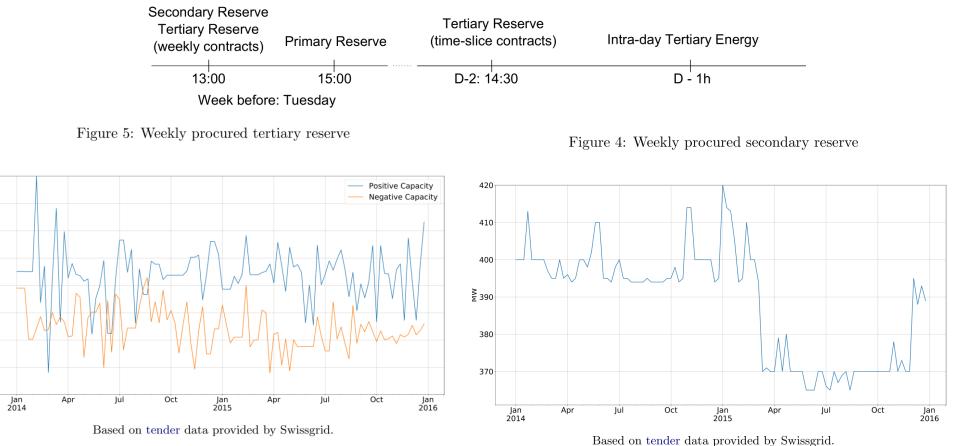

Reserve Procurement in Switzerland

Table 7: Products on reserve markets

	Primary Reserve	Secondary Reserve	Tertiary	Tertiary Reserve	
Product type Average demand Contract length Gate closure	symmetric 75 MW 1 week week-ahead	symmetric 390 MW 1 week week-ahead	Weekly auction positive/negative 200/120 MW 1 week week-ahead	Daily auction positive/negative 250/130 MW 4 hours 2 days-ahead	
Capacity payments Energy payments	Tuesday 15:00 pay-as-bid -	Tuesday 13:00 pay-as-bid day-ahead price +- 20 %	Tuesday 13:00 pay-as-bid have to bid in energy auction	14:30 pay-as-bid have to bid in energy auction	

Reserve Procurement in Switzerland (cont.)

Question:

800

700

600

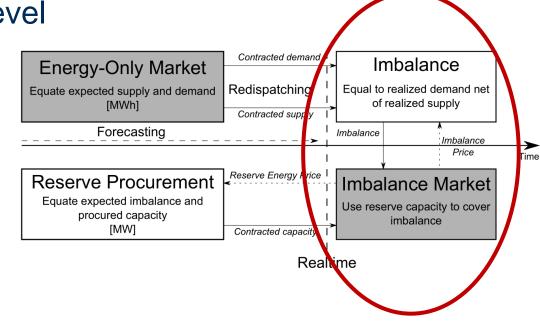
500

≩ 400

300

200

100


Is it possible to increase flexibility by

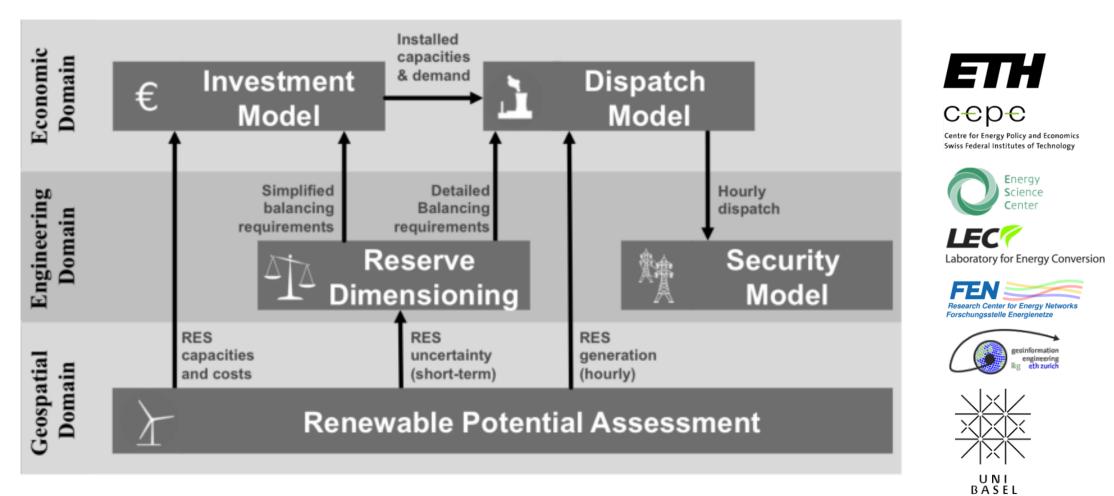
- (a) decreasing lead times for more dynamic sizing
- (b) increasing the contract flexibility (duration, asymmetric secondary reserve)?

Further Points

- Imbalance settlement
 - Organized at balancing group level
 - Two-price system for imbalance pricing
- Market participants
 So far only generators

- International trade
 - Cross-border trade until 60 min before delivery time
 - Switzerland not part of market coupling

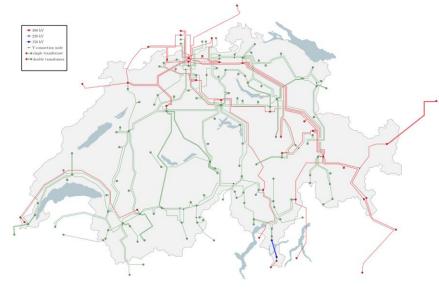
- The Swiss Electricity Market
- Simulations
- Summary and conclusions



Folie 12

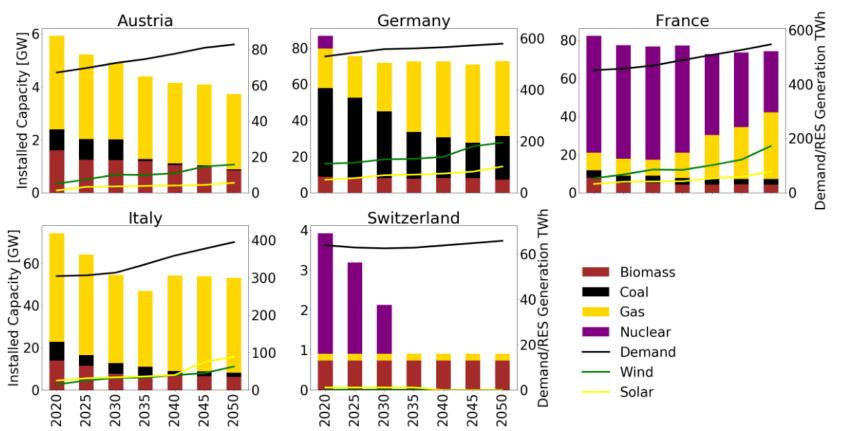
Assessing Future Electricity Markets: Modeling Framework

Spatial dimension: Switzerland and first neighbors Time dimension: Hourly in 5 year steps until 2050



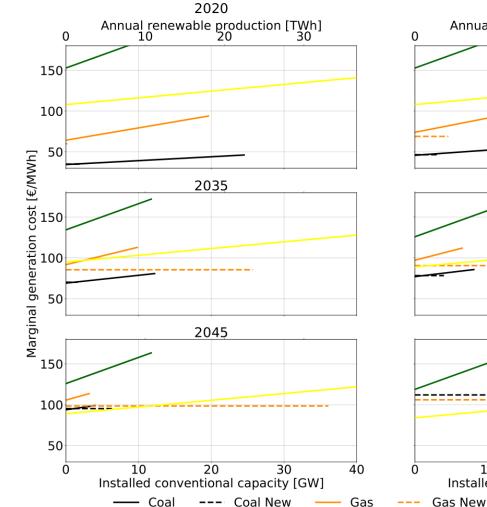
What do we (not) cover?

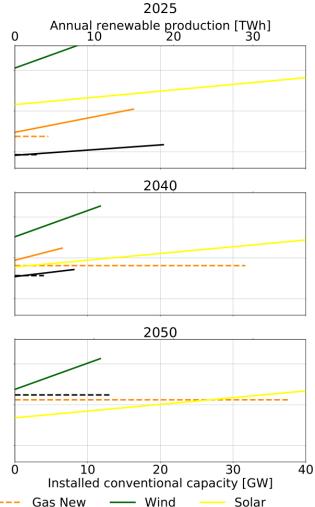
- Hourly market clearing (uniform within country)
 But: Optimized framework without contract length or lead-times
- Reserve procurement depending on renewables
 But: Optimized as hourly contracts with no lead times
- Spatial dimension
 DC load-flow in dispatch, AC for security analysis
- Hydro power:


Detailed cascading hydro flows in dispatch model Investment model abstracts from cascading hydro

Detailed assessment of renewable potential/variation
 But: No uncertainty in models

Baseline Assumptions: Capacities


Notes: The graph shows exogenously imposed changes of installed capacity (left axis, GW), demand, and renewable generation (right axis, TWh). Hydro capacities, modestly increasing over time, are not shown.

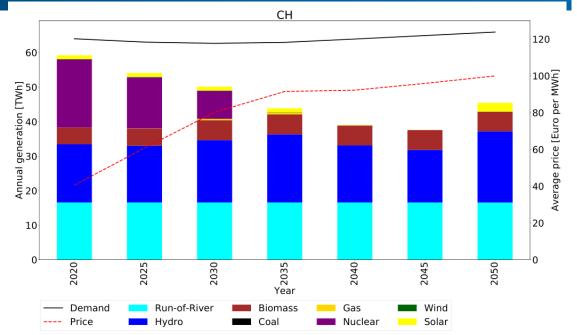

- Switzerland: Nuclear phase-out until 2050; demand according to Energy Strategie
- Capacity development of neighboring countries based on EU energy reference scenario

Baseline Assumptions: Cost

- Fuel and carbon prices according to EU energy reference and World energy outlook
- Renewable cost based on detailed spatial analysis for Switzerland and neighbors
- Exogenous technological progress for renewable cost (based on EU reference)

24 January 2019

School of


Management and Law

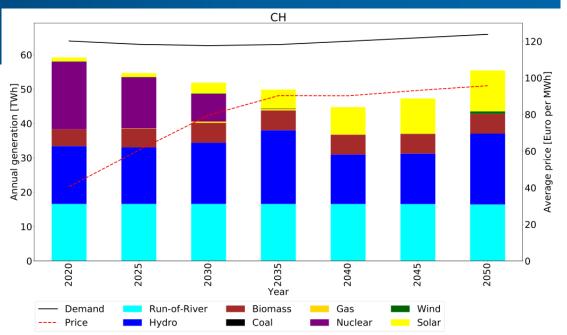
Capacity Mechanism	RES Policy	Balancing		
None	None	Current system Sizing: Year-ahead Tertiary/secondary: According to current Swissgrid rules		
Strategic storage reserve Demand: 750 GWh	RES support			
Market-wide capacity market <u>Demand</u> : Highest hourly demand in each year <u>Supply</u> : All units in the market according to average availability; interconnectors not eligible	<u>Demand (targets)</u> : 4.4, 11.3, 18.4 in 2020, 2035, 2050 <u>Supply</u> : PV, Wind, Biomass	Maximum flexibility Renewable generation causes no additional reserve demand		

Baseline Results: The Impact of Nuclear Phase-out

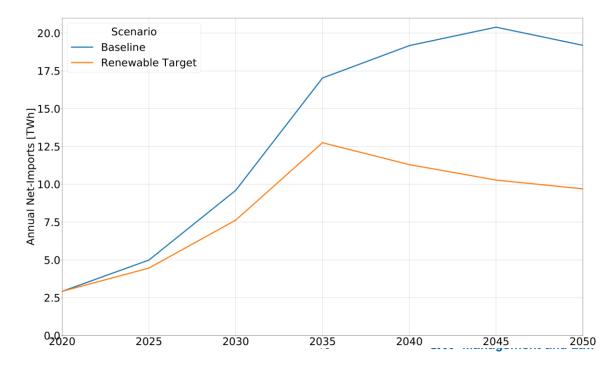
- Investments
 - Biomass:
 2025: 130 MW (potential exhausted)
 - PV:
 2050: 2.5 TWh (~4.3 GW)

Notes: The graph shows annual generation in Switzerland by generation technology as well as annual demand in TWh (left axis). On the right axis the average electricity price is shown in \in /MWh.

- 20.0 17.5 15.0 10.0 10.0 7.5 5.0 2.5 0,00 200 2025 2030 2035 2040 2045 2050 Law
- Nuclear-phase out mainly balanced by an increase in net-imports

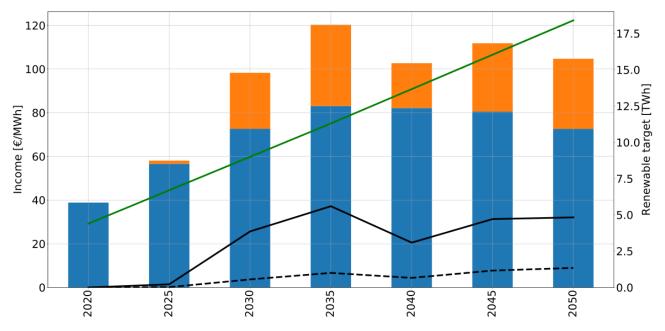

Renewable Targets

Investment


– Biomass:

2025: 130 MW (potential exhausted)

- Renewable generation (2050)
 - PV: 11.9 TWh (~20.3 GW)
 - Wind: 0.7 TWh (~ 0.6 GW)
- Reduction of net-imports due to renewable support mechanism


Notes: The graph shows annual generation in Switzerland by generation technology as well as annual demand in TWh (left axis). On the right axis the average electricity price is shown in \in /MWh.

Renewable Support Premiums

- Renewables Support Scheme:
 Renewable Premium
- Premium affected by
 - Relative marginal cost
 - Renewable target
 - Marginal cost in subsequent period
- Premium peaks in 2035
 (37.19 €/MWh)
- Demand surcharge in 2050:
 8.95 €/MWh

Figure 15: Renewable support premium

Notes: The graph shows the the mean income of solar producers by year (left axis \in /MWh). Also shown is the absolute level of the renewable premium (black line) as well as the final demand surcharge to refinance expenses for premium payments (dotted black line; both left axis \in /MWh). The demand surcharge is derived as total expenses on renewable support divided by final demand. The right axis measures the renewable target in TWh (green line).

Remaining Scenarios

- Capacity markets
 Virtually no impact as capacity target is already reached
- Storage reserve
 (with minimum requirement of 750 GWh)
 Virtually no impact but slight reconfiguration of storage
- Balancing market optimization
 Slight favor of renewables

Capacity Mechanism	RES Policy	Balancing		
None	None	Current system <u>Sizing</u> : Year-ahead <u>Tertiary/secondary</u> : According to current Swissgrid rules		
Strategic storage reserve <u>Demand</u> : 750 GWh	RES support			
Market-wide capacity market <u>Demand</u> : Highest hourly demand in each year <u>Supply</u> : All units in the market according to average availability; interconnectors not eligible	<u>Demand (targets)</u> : 4.4, 11.3, 18.4 in 2020, 2035, 2050 <u>Supply</u> : PV, Wind, Biomass	Maximum flexibility Renewable generation causes no additional reserve demand		

Year	2020	2025	2030	2035	2040	2045	2050
Target	10.5	10.4	10.3	10.3	10.5	10.7	10.8

Notes: The capacity target is derived as the annual peak demand of Switzerland. In all years peak demand occurs at February 6 10 am.

- The Swiss Electricity Market
- Simulation: Impact of Renewable Targets in Switzerland

Summary and conclusions

Summary and conclusions

- Within the existing market design, flexibility can be increased by
 - Decreasing intra-day closure (within the control zone)
 - More flexible reserve dimensioning
 - More flexible reserve contracts

- Simulations show that
 - Nuclear-phase out leads to increase in imports
 - Renewable targets decrease the need for these imports
 - Neither capacity market nor storage reserve significantly impact investment behavior

