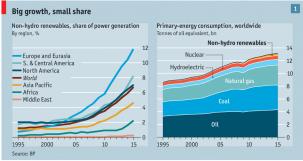
Residential Solar Panel Adoptions, Electricity Tariffs and Income Redistribution

Doina Radulescu

University of Bern, KPM, Oeschger Center for Climate Change Research and CESifo

January 22nd, 2020

AlpEnForCe, Energieforschungsgespräche Disentis

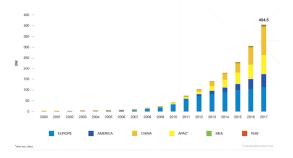

Outline

- Tariff Design and Welfare in Residential Solar Markets
- Income Redistribution vs. Environmental Concerns

Tariff Design and Welfare in Residential Solar Markets

Motivation - Reducing Emissions

- Governments worldwide aim at cutting fossil fuel emissions, keep global worming below 2°C (now 1.5°C) (In 2015 195 countries have signed the Paris Agreement)
- Solar PhotoVoltaic (PV) is one of the main renewables
 - Between 2010-2019, USD 1,349 bn investments in solar capacities worldwide



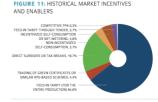
Economist.com

Motivation - Development of Installed Capacity

- \bullet Global capacity increased from ${\sim}5$ GW in 2005 to ${\sim}404$ GW in 2017
- Solar PhotoVoltaic (PV) is one of the main renewables
 - $\bullet\,$ Since 2017 contributes to more than 2% of global demand

FIGURE 6 EVOLUTION OF GLOBAL TOTAL SOLAR PV INSTALLED CAPACITY 2000-2017

Motivation - PV Installed Capacity


Switzerland successful example (2017)

- 2.9GW installed PV capacity
- Over 3% of PV contribution to electricity demand
- 950 kWh/kWp average irradiation (same as Germany, Belgium,..)
- $\bullet\,$ Capacity of ${\sim}200W$ per inhabitant
 - 40% wrt Germany
 - 60% wrt Italy
 - 170% wrt Spain
 - 185% wrt France

Motivation - Growth Drivers

Growth in solar PV installations mostly driven by

- Government incentives
 - Direct: Feed-in tariffs, installation cost subsidy
 - Indirect: Two-parts tariff for electricity bill
 - Consumption-based tariffs (cent per kWh) to finance energy costs, network costs
- 2 Declining PV systems' prices
 - $\bullet~\text{From} \sim 7~\text{USD/W}$ in 2001 to $\sim 0.3~\text{USD/W}$ in 2017

SOURCE IEA PVPS

Motivation - Swiss Policy Initiatives

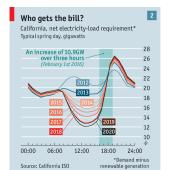
Neue Zürcher Zeitung

Wie die Zürcher Klimaallianz mit einem radikalen Vorstoss die Solarwende erzwingen will

Die Stadt Zürich hinkt beim Solarstrom hinterher. Nun fordert die links-grüne Klimaallianz einen fundamentalen Wandel. Das wird Hunderte Millionen Franken kosten – und das Gesicht der Stadt verändern.

13.06.2019

Bundesrat umgarnt Strombranche


Die Schweiz habe 30 Jahre, um klimaneutral zu werden. Diese Zeit reiche für grosse Veränderungen, wenn man nicht zögere, sondern jetzt entschlossen handle. Die Branche müsse die **Stromproduktion** aus einheimischen und erneuerbaren Quellen forcieren, damit die Dekarbonisierung vorankomme und die Versorgungssicherheit gewährleistet bleibe.[...] «Vehement investieren» müsse die Branche in die Photovoltaik, deren Chancen enorm seien.

17.01.2020

Motivation - Challenges from Growth in Solar PV

1 Network Financing: Households with PV need grid access

- But contribute less to largely fixed network costs, increasing due to intermittency (doubled in South Australia since 2008)
- Swiss regulator forecasts 6 bn CHF additional grid costs from decentralized production until 2035.
- Paradox: The more efficient energy consumption becomes, the less households contribute to grid financing.

Motivation - Example

Motivation - Challenges from Growth in Solar PV

- Equity: Richer households more likely to install PV, shifting the burden of network costs onto poorer households
 - More likely to own single house and afford installation costs
 - In our Swiss data the average income of households with a PV is 45% higher than the average income of those without

Motivation - Challenges from Growth in Solar PV

- Cannibalization: Solar PVs produce at zero marginal costs, driving down energy prices
 - Reduces incentive to adopt solar panels

Key Questions

- Are there undesirable income redistribution aspects in a system of PV installations and volumetric charges?
- How should optimal tariffs look like that
 - Guarantee network financing
 - Do not redistribute income
 - Incentivize PV adoptions

Contribution

Address the challenges of network financing and equity using

- 2008-2014 yearly panel for 165k households in Bern (CH)
 - Data on electricity consumption, prices, income, wealth, demographics, PV adoption, building characteristics
- Estimate a dynamic structural model of households' electricity consumption and PV adoption

Literature

• Electricity demand: Reiss, White (2005), Ito (2014)

 \Rightarrow Exact match of household income & wealth data

- **PV** adoption: Borenstein (2015), Burr (2014), De Groote, Verboven (2019)
 - \Rightarrow First paper to combine energy consumption & PV adoption data, show how tariffs affect adoption
- Network financing: Borenstein (2008), Bushnell (2015)

Literature

Redistribution via one or two instruments

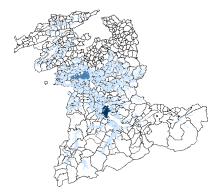
- Atkinson and Stiglitz (1976); Saez (2002); Kaplow (2006)
- Feldstein (1972a and b); Munk (1977); Cremer and Gahvari (2002)
- Sandmo (1975); Pirtilla and Tuomala (1997); Sjögren and Aronsson (2017)

Regressive/progressive effects of environmental levies and energy prices

- Hassett, Mathur and Metcalf (2009); Burtraw, Sweeney and Walls (2009); Chancel and Piketty (2015)
- Borenstein (2012); Levinson and Silva (2018)

The Dataset

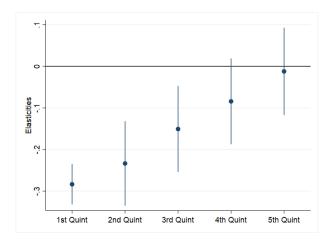
Unique 2008-2014 yearly panel dataset for 165k households in the Canton of Bern, merging data from


- Energy companies (BKW, EWB, ET)
 - Energy consumption and expenditure, PV installations, prices
- 2 Tax office of Bern
 - Income, wealth, and tax payments
- **3** Swiss Federal Statistical Office
 - Buildings' characteristics
- Eturnity AG
 - Simulated PV production, installation costs, consumption profiles for all households

PV Investment Model

- Estimate energy price elasticities
- Household PV investment decision depends on
 - energy costs wit/without a solar panel
 - investment costs
 - future remuneration of PV produced energy
- We can compute for each household the probability to install a PV
- Simulate how tariff changes influence the investment decision

Energy Demand - Identification

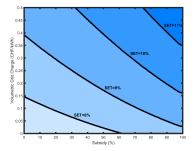

 \Rightarrow Assign households to common border points (1km distance) and include border point fixed effects

Results Energy Demand

Elasticities across the income distribution

 \Rightarrow High income quintiles less elastic

Results PV Adoption

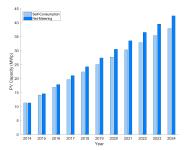

• 1 CHF reduction in installation costs weighs twice as much as 1 CHF increase in PV revenue.

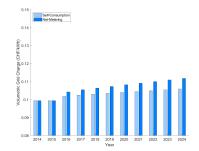

Instruments of the Regulator

- Volumetric charges P_G: Stimulate investments in PV contribute to financing the network infrastructure, are progressive.
- **Subsidy of PV installations cost** *s* : Stimulates investment, requires additional financing.
- **Fixed fees** *f* : Contribute to network financing, no incentives to install a PV, are regressive.

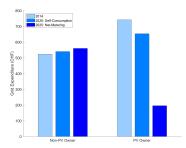
 \Rightarrow Different solar energy and income redistribution targets require different combinations of tariffs.

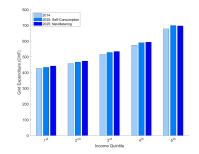
Solar Energy Induced by Variable Price (P_G) and Subsidy (s)




Counterfactual Simulations

Death spiral:


- (a)14.7% self-consumption
- (b) net metering (100% deduction of solar energy from electricity bill)
- Increase in grid tariff (P_G) to recover grid costs
- Change in energy bill across income quintiles


Future Adoption and Increase in Volumetric Charges (1)

Future Adoption and Increase in Volumetric Charges (2)

Counterfactual 2 - Optimal Tariff Design

Change in P_G , f, s to achieve 9% solar energy target, recover grid cost, minimize equity distortions. Account for grid integration costs of CHF 0.055/kWh

- Four different objective functions
 - Minimize grid expenditures (*Cost*)
 - Minimize grid costs and equitable grid cost distribution (*Cost/Equity*)
 - Maximize welfare (*Welfare*)
 - Maximize welfare and equitable grid cost distribution (*Welfare/Equity*)

Table: % Change in Variable Price, Fixed Fee, Subsidy, Grid Expenditure, Welfare

		Solar Ene	rgy Target				
	(9.0%)						
	Cost	Cost	Welf	Welf			
		Equity		Equity			
Instruments							
% Price (P_G) Change	30.8	-1.9	-42.2	-9.5			
% Fixed Fee (f) Change	-95.3	22.3	173.5	50.1			
% Subsidy (<i>s</i>) as % <i>F</i> _i	62.0	72.5	86.5	75.0			
Percentage Change GE _i by Inc. Quintile							
1 st Quintile	-12.1	9.9	38.3	15.1			
2 nd Quintile	-8.5	9.4	32.5	13.6			
3 rd Quintile	-3.4	8.6	24.1	11.4			
4 th Quintile	0.9	7.9	17.0	9.5			
5 th Quintile	5.7	7.0	9.0	7.4			
Percentage Change GE _i by PV							
Non-PV HH	6.4	7.4	8.8	7.6			
PV HH	-16.2	-9.6	-1.2	-8.1			
Grid Integr. Cost (M CHF)	3.17	3.30	3.51	3.34			
Subsidy Cost (CHF per kWh)	0.31	0.37	0.45	0.39			

Income Redistribution vs. Environmental Concerns

Affordability of Energy

Minister for the environment Altmaier: "Strom darf kein Luxusgut werden" (2013)

Conservatives promise to cap prices in UK energy market (2017)

Theresa May promised to intervene in electricity markets if they "are thought to be failing ordinary families." (The Guardian, 8.5.2017)

Energy Poverty vs. Environmental Concerns

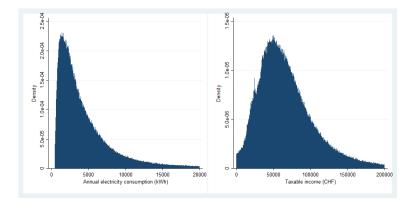
Affordability of public utility services such as electricity is a salient issue in European and OECD countries.

- Expenditures on electricity represent 5% of annual annual income for the lowest income decile and 1% for the 10th decile in the Canton of Bern (Switzerland).
- In 2015, the poorest households in the EU spent on average 870€on energy products (excl. transport)= 10% of total consumption expenditure.
- Poorest households spent only 3% of total expenditures on energy in Sweden, but up to 23% in Slovakia.

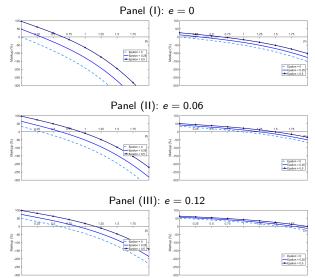
However

• The residential sector also contributes to around 17% of CO₂ emissions from fuel combustion with electricity and heat (IEA, 2018).

Protecting the Environment - Fighting Inequality


What We Do

- Analyse redistributional effects of electricity prices in the presence of income taxation and environmental externalities.
- Controversies in the theoretical literature on the optimal direct-indirect tax mix (in economies with environmental externalities) call for more empirical work.


Findings

- No externalities: Redistribution concerns mostly require subsidisation of electricity prices in addition to progressive income tax.
- Low inequality aversion and non zero externality costs: Upward deviation from marginal cost. Pigouvian tax
- Asymmetric information between regulator and utility: Positive price mark-up.

Distribution of Electricity Consumption and Taxable Income

Optimal Markup for Different Degrees of Inequality Aversion and $\beta = -0.16$ or $\beta = -0.6$

Conclusion

- We address two issues posed by the growing number of PV installations: network financing and equity.
- We recover optimal tariffs through a regulator's optimization problem, based on models of energy demand and PV adoption.
- Our model can be applied to different types of networks infrastructures (i.e highways, postal network) and be generalized to several household's technology adoption decisions.
- The trade-off between equity and environmental concerns has implications for the design of electricity tariffs.

	BKW		E	WB	ET		
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	
Fixed Fee Double Tariff (CHF/year)	153	27	121	22	111	19	
Price High Tariff (Rp./kWh)	24.4	.8	19.7	1	25.6	.6	
Energy Price	11.8	.3	11.6	.4	12.4	.2	
Grid Price	10.4	1	7.3	.8	10.9	1.7	
Municipality Tax	1.8	.2	.4	.2	1.8	1.5	
KEV Tariff	.4	.1	.4	.2	.5	(
Price Low Tariff (Rp./kWh)	14	.8	10.3	.4	14.9	1.4	
Energy Price	7.3	.2	7.4	.3	9.7	.2	
Grid Price	4.5	.5	2	.4	2.9	.4	
Municipality Tax	1.8	.2	.4	.2	1.8	1.5	
KEV Tariff	.4	.1	.4	.2	.5		
Fixed Fee Uniform Tariff (CHF/year)	125	17	90	23			
Price Uniform Tariff (Rp./kWh)	23.8	.6	18.2	1			
Energy Price	11.4	.4	10.5	.4			
Grid Price	10.2	1	6.8	.9			
Municipality Tax	1.8	.2	.5	.2			
KEV Tariff	.4	.1	.4	.2			

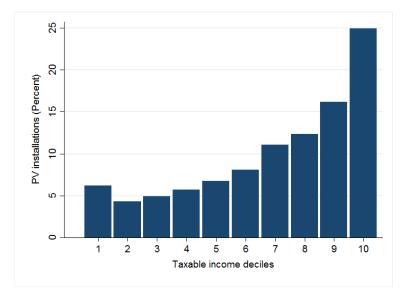
Table: % ENERGY PRICES, NETWORK TARIFFS AND TAXES

Table: % ENER	GY CONSUMPTIC	N AND EXPENDITURE
---------------	---------------	-------------------

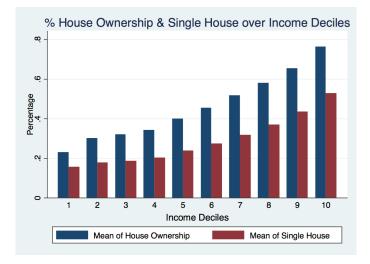
	N Obs	Mean	Std Dev	5th Perc	Median	95th Perc
Energy Consumption (kWh)	872,715	4,139	3,805	812	3,022	11,045
Consumption High Tariff	538,232	2,439	1,940	544	1,977	5,978
Consumption Low Tariff	538,232	2,788	2,874	278	2,143	7,389
Consumption Uniform Tariff	334,483	2,303	1,622	662	1,919	5,161
Energy Expenditure (CHF)	872,715	928	702	267	738	2,226
Energy Price Expenditure (CHF)	872,715	409	350	88	313	1,053
Price Expenditure High Tariff	538,232	291	231	65	236	713
Price Expenditure Low Tariff	538,232	212	219	24	162	559
Price Expenditure Uniform Tariff	334,483	258	184	73	214	584
Grid Expenditure (CHF)	872,715	441	282	157	370	960
Tax Expenditure (CHF)	872,715	59	67	2	40	178
KEV Expenditure (CHF)	872,715	19	19	3	14	53

Table: % INCOME, WEALTH AND TAX PAYMENTS

	N Obs	Mean	Std Dev	5th Perc	Median	95th Perc
Total Income (CHF)	872,715	92,485	124,687	13,239	78,256	201,248
Taxable Income (CHF)	872,715	71,156	114,552	4,866	60,663	156,036
Total Wealth (CHF)	872,715	493,641	2029507	0	195,239	1571257
Cantonal Tax (CHF)	872,715	7,158	13,992	0	5,358	18,366
Municipal Tax (CHÉ)	872,715	3,682	6,840	0	2,807	9,350
Federal Tax (CHF)	872,715	1,654	9,141	0	454	5,845


Table: % Simulated Capacity and Energy Production

	N Obs	Mean	Std Dev	5th Perc	Median	95th Perc
PV Production Capacity (kWp)	40,414	9.6	4.8	4.7	8.4	18.9
PV Energy Production (kWh)	40,414	9,697	5,604	4,708	8,354	19,133
Self-Consumption						
% of Production	40,414	14.7	9.6	5.1	12.3	33.4
% of Consumption	40,414	20.2	8.1	11.7	18.6	33
in kWh	40,414	1,213	861	592	982	2,616


Table: % PV ENERGY PRODUCTION AND REMUNERATION
--

Variables	N Obs	Mean	Std Dev	5th Perc	Median	95th Perc
PV Inverter Capacity (kVA)	4,401	8.1	8.6	2.2	6.2	20.7
PV Energy Production (kWh)	4,401	7,675	8,357	2,000	6,000	19,500
PV Remuneration (CHF)	4,401	3,368	2,189	1,338	2,722	7,667
Energy Consumption (kWh)	4,401	8,671	6,751	1,820	7,265	20,831

Figure: Distribution of PV installations by income

Richer Households More Likely to Adopt PV

Estimating the Model

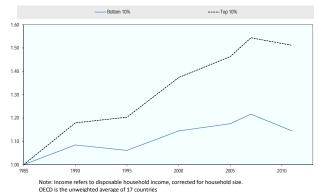
Estimate household's model in 3 steps

Static utility maximization to choose optimal electricity consumption, conditional on PV

 \Rightarrow Parameters of electricity demand with geographic RDD

Expectation over evolution of state variables that determine dynamic PV adoption decision

 \Rightarrow Parameters of transition probabilities

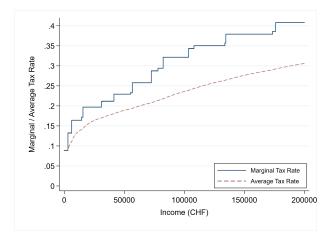

O Dynamic utility maximization to adopt PV

 \Rightarrow Parameter of installation cost function and future revenues

Inequality and Redistribution

• Inequality is a key challenge for decades to come.

Trends in real household incomes at the bottom and the top, OECD average, 1985 = 1



occors the unweighted average of 17 countries

Source: OECD Income Distribution Database (2015)

• Optimal policies to achieve redistribution still subject to considerable debate.

Individual Tax Burden Bern

